Stimulus-evoked modulation of sensorimotor pyramidal neuron EPSPs.
نویسندگان
چکیده
Sensory cortical neurons display substantial receptive field dynamics during and after persistent sensory drive. Because a cell's response properties are determined by the inputs it receives, receptive field dynamics are likely to involve changes in the relative efficacy of different inputs to the cell. To test this hypothesis, we have investigated if brief repetitive stimulus drive in vitro alters the efficacy of two types of corticocortical inputs to layer V pyramidal cells. Specifically, we have used whole cell recordings to measure the effect of repetitive electrical stimulation at the layer VI/white matter (WM) border on the synaptic response of layer V pyramidal cells to corticocortical input evoked by electrical stimulation of layer I or layer II/III and emulated by local application of glutamate. Repetitive stimulation (10 Hz for 3 s) at the layer VI/WM border transiently potentiated excitatory postsynaptic potentials (EPSPs) evoked by electrical stimulation of layer II/III by 97 +/- 12% (mean +/- SE). The recovery of EPSP amplitude to its preconditioning value was well-described by a single-term decaying exponential with a time constant of 7.2 s. The same layer VI/WM conditioning train that evoked layer II/III EPSP potentiation frequently caused an attenuation of layer I EPSPs. Similarly, subthreshold postsynaptic responses to local glutamate application in layers II/III and I were potentiated and attenuated, respectively, by the conditioning stimulus. Potentiation and attenuation could be evoked in the same cell by repositioning the glutamate puffer pipette in the appropriate layer. The conditioning stimulus that led to the transient modification of upper layer EPSP efficacy also evoked a slow depolarization in glial cells. The membrane potential of glial cells recovered with a time course similar to the dissipation of the potentiation effect, suggesting that stimulus-evoked changes in extracellular potassium (ECK) play a role in layer II/III EPSP potentiation. Consistent with this proposal, increasing the bath concentration of ECK caused a substantial increase of layer II/III EPSP amplitude. EPSP potentiation was sensitive to postsynaptic membrane potential and, more importantly, was significantly weaker for synaptic currents than for synaptic potentials, suggesting that it involves the recruitment of a postsynaptic voltage-dependent mechanism. Two observations suggest that layer II/III EPSP potentiation may involve the recruitment of postsynaptic sodium channels: EPSP potentiation was strongly reduced by intracellular application of N-(2,6-dimethyl-phenylcarbamoylmethyl) triethylammonium bromide (QX-314) and responses to local glutamate application were potentiated by high ECK in the presence of cadmium but not in the presence of tetrodotoxin. The results demonstrate a novel way in which brief periods of repetitive stimulus drive are accompanied by rapid, transient, and specific alterations in the functional connectivity and information processing characteristics of sensorimotor cortex.
منابع مشابه
Developmental switch in the short-term modification of unitary EPSPs evoked in layer 2/3 and layer 5 pyramidal neurons of rat neocortex.
Amplitudes of EPSPs evoked by repetitive presynaptic action potentials can either decrease (synaptic depression) or increase (synaptic facilitation). To determine whether facilitation and depression in the connections between neocortical pyramidal cells varied with the identity of the pre- or the postsynaptic cell and whether they changed during postnatal development, whole-cell voltage recordi...
متن کاملCorticospinal-specific HCN expression in mouse motor cortex: I(h)-dependent synaptic integration as a candidate microcircuit mechanism involved in motor control.
Motor cortex is a key brain center involved in motor control in rodents and other mammals, but specific intracortical mechanisms at the microcircuit level are largely unknown. Neuronal expression of hyperpolarization-activated current (I(h)) is cell class specific throughout the nervous system, but in neocortex, where pyramidal neurons are classified in various ways, a systematic pattern of exp...
متن کاملM1 and M4 receptors modulate hippocampal pyramidal neurons.
Acetylcholine (ACh), acting at muscarinic ACh receptors (mAChRs), modulates the excitability and synaptic connectivity of hippocampal pyramidal neurons. CA1 pyramidal neurons respond to transient ("phasic") mAChR activation with biphasic responses in which inhibition is followed by excitation, whereas prolonged ("tonic") mAChR activation increases CA1 neuron excitability. Both phasic and tonic ...
متن کاملThe time course and amplitude of EPSPs evoked at synapses between pairs of CA3/CA1 neurons in the hippocampal slice.
Unitary EPSPs were evoked in CA1 pyramidal neurons by activation of single CA3 pyramidal neurons. Seventy-one EPSPs were recorded. The peak amplitudes of these EPSPs ranged from 30 to 665 microV with a mean of 131 microV. Rise times and half-widths were measured, the means +/- SD being 3.9 +/- 1.8 and 19.5 +/- 8.0 msec, respectively. The time courses of these EPSPs were consistent with a brief ...
متن کامل1 2 3 4 M 1 and M 4 receptors modulate hippocampal pyramidal neurons 5
31 Acetylcholine (ACh), acting at muscarinic ACh receptors (mAChRs), modulates the 32 excitability and synaptic connectivity of hippocampal pyramidal neurons. CA1 pyramidal 33 neurons respond to transient (" phasic ") mAChR activation with biphasic responses in 34 which inhibition is followed by excitation, whereas prolonged (" tonic ") mAChR activation 35 increases CA1 neuron excitability. Bot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 88 6 شماره
صفحات -
تاریخ انتشار 2002